Titlebar

Bibliographische Daten exportieren
Literatur vom gleichen Autor
plus im Publikationsserver
plus bei Google Scholar

Lesezeichen anlegen
 

Compressed Sensing for Finite-Valued Signals

Titelangaben

Verfügbarkeit überprüfen

Keiper, Sandra ; Kutyniok, Gitta ; Lee, Dae Gwan ; Pfander, Götz E.:
Compressed Sensing for Finite-Valued Signals.
s.l., 2016

Kurzfassung/Abstract

The need of reconstructing discrete-valued sparse signals from few measurements, that is solving an undetermined system of linear equations, appears frequently in science and engineering. Whereas classical compressed sensing algorithms do not incorporate the additional knowledge of the discrete nature of the signal, classical lattice decoding approaches such as the sphere decoder do not utilize sparsity constraints.
In this work, we present an approach that incorporates a discrete values prior into basis pursuit. In particular, we address unipolar binary and bipolar ternary sparse signals, i.e., sparse signals with entries in {0,1}, respectively in {−1,0,1}. We will show that phase transition takes place earlier than when using the classical basis pursuit approach and that, independently of the sparsity of the signal, at most N/2, respectively 3N/4, measurements are necessary to recover a unipolar binary, and a bipolar ternary signal uniquely, where N is the dimension of the ambient space. We will further discuss robustness of the algorithm and generalizations to signals with entries in larger alphabets.

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Schlagwörter:Compressed Sensing, Sparse Recovery, Null Space Property, Finite Alphabet, Statistical Dimension, Phase Transitions
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen/Informatik
DOI / URN / ID:arXiv:1609.09450
Titel an der KU entstanden:Nein
Eingestellt am:16. Aug 2017 09:06
Letzte Änderung:12. Feb 2020 11:01
URL zu dieser Anzeige:http://edoc.ku-eichstaett.de/20384/