Titlebar

Bibliographische Daten exportieren
Literatur vom gleichen Autor
plus im Publikationsserver
plus bei Google Scholar

Lesezeichen anlegen
 

Should I buy my new iPhone now? Predictive Event Forecasting for Zero-Inflated Consumer Goods Prices

Titelangaben

Verfügbarkeit überprüfen

Buchwitz, Benjamin ; Küsters, Ulrich:
Should I buy my new iPhone now? Predictive Event Forecasting for Zero-Inflated Consumer Goods Prices.
In: Proceedings of the International Conference on Information Systems, ICIS 2018 ; San Francisco, California December 13 - 16 2018. - San Francisco, CA, 2018. - S. 1-16
ISBN 978-0-9966831-7-3

Volltext

Link zum Volltext (externe URL): https://aisel.aisnet.org/icis2018/datascience/Pres...

Kurzfassung/Abstract

Price Comparison Sites enjoy great popularity because they enable customers to make better – more informed, less costly – buying decisions. We use a large dataset of daily minimum prices for 238 smartphones from Price Comparison Sites to develop a methodological approach to model the characteristics of consumer electronic goods prices and advice customers on their purchase time decision. The introduced method consists of two stages, the first one generating a multi-step price drop probability using a customized ARMA-GARCH model combined with an ensemble bootstrap. The second step constitutes a threshold for the estimated event probabilities that is optimized to achieve the highest possible savings for the customer. The derived recommendation advices users either to wait with the purchase or to buy the product of interest immediately to avoid losses due to increasing prices. In the evaluation, we compare our developed approach to two benchmark strategies: “always buy” and “always delay”, where the latter is expected to be the dominating strategy as prices show strong deterioration. The evaluation of 150,654 automated decisions shows that the proposed decision support system outperforms both benchmarks and delivers statistically as well as economically significant results. We reach savings of up to 26.67 € per recommendation and show that our fully automated decisions generate a significant added value and save money for the clients.

Weitere Angaben

Publikationsform:Aufsatz in einem Buch
Schlagwörter:Predictive Analytics; Decision Support Systems; Ensemble Forecasting; Bootstrap; Buying Recommendation; Price Comparison Sites
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Statistik > Lehrstuhl für Statistik und Quantitative Methoden der Wirtschaftswissenschaften
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Begutachteter Aufsatz:Ja
Titel an der KU entstanden:Ja
Eingestellt am:12. Jun 2019 15:33
Letzte Änderung:12. Jun 2019 15:33
URL zu dieser Anzeige:http://edoc.ku-eichstaett.de/23020/